If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-200=0
a = 2; b = 5; c = -200;
Δ = b2-4ac
Δ = 52-4·2·(-200)
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{65}}{2*2}=\frac{-5-5\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{65}}{2*2}=\frac{-5+5\sqrt{65}}{4} $
| 4^2x+3=0.0625^x | | 3x-32+x-2=180 | | (5m-3)=12 | | 3x+159=360 | | -20=-3u+5(u+8) | | -9y+2=-43 | | 2x+5x-10=2(x+2) | | 1,5x-8=4x+3 | | 3c+7-3/4c=10 | | 7x+7=7(1-x) | | 3(5z+2)=4(3z+5) | | 132+y=180 | | m=28÷4 | | 0.02x+0.14=0.20 | | 3j=48 | | 7/24-x+1/8=x-3/6 | | r−43=2 | | y+1=69 | | -2y+8=12 | | v=53+38 | | 8x=3x+5+6x-16 | | 3b(2b+3)=9b(b+9) | | u=2(13) | | -a2+9=13 | | 6^x=150 | | 8y+9=-49 | | 3y-4=-34 | | 5x-14=6(x+2) | | h=36÷6 | | -3y-7=17 | | g+42=54 | | Y=(12-7x)/2 |